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SUMMARY 

A computationally efficient method for calculating the derivative of NOE intensities with respect to any 
parameter is presented. This method is based on an integral expression representing the gradient. We will 
derive this expression from first principles using standard perturbation expansion techniques, and show it to 
be equivalent to an analytical expression [Yip, P. and Case, D.A. (1989) J. Magn. Reson., 83, 643] Imple- 
mentation of this method in a refinement scheme (NOE-MD) is also briefly mentioned. 

Until recently, 2D NOESY intensities have been used only in a qualitative way in structure 
determination (Wtithrich, 1986). Typically, distance bounds, estimated from a qualitative inter- 
pretation of the intensities, comprise part of the restraints for structural generation and refine- 
ment. While distance bounds are necessary for the initial generation of structures in metric matrix 
or simulated annealing methods, a refinement strategy employing distance bounds instead of the 
NOESY intensities is less than optimal. The drawbacks include the possibility of user bias in the 
distance estimates, the imprecision of the distance bounds and perhaps more significantly, the loss 
of information in replacing the NOEs by distance bounds as experimental restraints. For exam- 
ple, a distance bound only restricts the separation between the two protons in question, while the 
NOE intensity between these two protons contains additional information about their spin envi- 
ronment and dynamics. Thus, employing NOEs directly not only makes refinement more rigor- 
ous, but also can lead to more information concerning the molecule. 

The growing number of works which use the NOE intensities in an automated fashion can be 
divided roughly into two categories: hybrid matrix based or gradient based. In hybrid-matrix 
based methods (Boelens et al., 1989; Nikonowicz et al., 1989; Borgias and James, 1990; Kim and 
Reid, 1992), a relaxation rate matrix is solved directly from a hybrid matrix of simulated and 
experimental NOE intensities. Distance bounds, deduced from this rate matrix, are then used as 
restraints for structural refinement by restrained molecular dynamics. This procedure is iterated 
until some convergence criteria are met. 
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In gradient-based methods, the gradient of the NOEs is incorporated into a molecular dynam- 
ics force field to help drive a structure toward better agreement with the experimental intensities. 
The gradient is calculated by using either an exact expression (Yip and Case, 1989; Nilges et al., 
1991), an approximate expression (Bonvin et al., 1991), or numerical differentiation (Baleja et al., 
1990). The gradient-based approaches are perhaps simpler in content and clearer in principles 
-they attempt to solve a gradient-driven optimization problem. However, the computation of the 
gradient of the NOEs, either using the exact expression or numerical differentiation, can be 
extremely time consuming. While avoiding the computational complexities of calculating the full 
gradient, the approach of Bonvin et al. (1991) could underestimate the effects of spin diffusion, 
because higher ordered terms in the Taylor series are neglected when computing the derivatives. 

For refinement based on the gradient of NOEs to become more practicable and rigorous, a 
method of calculating the gradient both accurately and efficiently is needed. In this communica- 
tion, we derive a new integral expression for the gradient of the NOEs. This expression is exact. 
Thus multi-spin effects are fully accounted for, without limitations on either mixing times or 
correlation times. Most importantly from a practical point of view, this expression can be evaluat- 
ed efficiently by standard numerical techniques to give accurate results. 

The 2D NOESY intensity matrix A at a mixing time ~m is given by the exponential of the 
relaxation rate matrix, R (Macura and Ernst, 1980). 

A (R)  = exp  ( - R%) .  (1) 

The rate matrix is a function of the spectral densities J0, J1 and J2 (Solomon, 1955; Macura and 
Ernst, 1980; Tropp, 1980). The exact expression of the rate matrix will, of course, depend on the 
motional models used and will not concern us here. We are interested in a general expression for 
the partial derivative of the NOESY matrix A with respect to any parameter (e.g. an atomic 
coordinate) on which the rate matrix depends. We denote the parameter by d. We would like to 
obtain ~A~j/~d. First of all, by the chain rule, 

0A,j _ 0A,j 0Rkl 
= )_.2 - - x  (2) 

Od k,l ORkl 0d 

The problem thus reduces to finding the derivatives of the rate matrix elements with respect to 
the parameter d, 5Ru/~d, and the derivatives of the NOE matrix elements with respect to the rate 
matrix elements, ~A,j/~Rk~. For most motional models, ~Rkl/~d is easily computable. For exam- 
ple, in the case of isotropic tumbling without internal mobility, the rate matrix is a simple function 
of all its parameters: the atomic coordinates, correlation time and spectrometer frequency. The 
model independent and technically challenging component of Eq. 2 is 6A,j/~Rkl. We start with the 
definition of the derivative: 

A (R + D),j - A (R)I j 
~AIj _ lira , (3) 
0Rkl h-+0 h 

where R denotes the rate matrix, D is a matrix whose only nonvanishing component is h in the 
k-th row and 1-th column, and A (R+D) is exp (-(R+D)%). 

To obtain the derivative, one needs to calculate exp(-(R+D)%) only to the first order in h as 
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higher ordered terms will vanish upon taking the limit. Treating D as a perturbation of R, we can 
easily obtain the first order expression by using the standard perturbation expansion techniques 
in quantum mechanics (for example, Schiff, 1955). More explicitly, the rate matrix R, becomes the 
Hamiltonian, while Zm plays the role of the imaginary time i t. The NOE matrix A can be identified 
as the evolution operator. D then is the perturbation Hamiltonian. Such techniques have been 
used to obtain approximate expressions for the NOE matrix A (Yip, 1989). Thus to first order 
in h, 

"c m 

A (R + D)lj = A (R),j - h f f(s)ds, (4) 
0 

where the function f(s) is simply a product of two components of the NOE matrix defined as 
follows, 

f(s) = exp (-R( 'c  m - S))lk exp (-Rs)Ij. (5) 

Substituting Eq. 4 in Eq. 3, we finally obtain, 

0AIj Zm 
- f f(s)ds. (6) 

O e k l  0 

More explicitly, we have, upon using Eq. 5, 

8A,j _ Xm 
f exp (-R(% - S)),k exp (-Rs)ljds. (7) 

8Rkl  0 

Putting Eq. 7 into Eq. 2 will give us the derivative of the NOE matrix with respect to any 
parameter. 

In the literature, an exact expression for the derivative using eigenvectors and eigenvalues has 
been proposed (Yip and Case, 1989): 

0A,j 
0Rkl  -- ~r,u Lr'LrkLulLuJ (exp (--)~r'~m) -- exp (--)~uXm))/ 0~r -- '~u), (8)  

where LIj and hi are the eigenvectors and the eigenvalues matrix of R, respectively. 

R1j = ~ LklLkj~  k . (9) 
k 

We can easily show that the two expressions for the derivatives are indeed equivalent. First, Eq. 
9 implies that, 

exp (-Rs)lj = ~ LklLkjexp (-EkS). (10) 
k 

Using Eq. 10 in Eq. 7, we have, 

0A1j __ Zm 
0Rkl ~r,u LnLrkLulLuJ x f0 exp (--hr('Cm -- S)) exp (-hus)ds. (11) 

On carrying out the integral, we recover Eq. 8, thus establishing that Eq. 6 (or Eq. 7) is an exact 
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expression of the derivative. In addition to being exact, Eq. 6 also presents several significant 
practical advantages: 

(i) Computational efficiency. The key is that the NOE matrix varies slowly and smoothly with 
time. For instance, build-up or diagonal curves obtained from our simulations can all be fitted 
extremely well by polynomials of order no higher than 6. The integrand in Eq. 6, f(s), is a product 
of two components of the NOE matrix, and therefore a well-behaved function of the integrating 
variable s. Numerical integration techniques can thus be used effectively for accurate computa- 
tion of the integral. For example, using a 10-point Simpson's rule or a 5-point Gaussian quadra- 
ture yields extremely accurate results (less than 0.5% error) to the integral. The computational 
load of evaluating f(s) at 5 10 points is significantly smaller than that of Eq. 8, where multiple 
summations are required. 

(ii) Methodologicalflexibility. Since the integrand does not involve diagonalization, any tech- 
niques that evaluate NOEs accurately and efficiently could be used to produce the derivatives. 
For example, one can use an approach based on the numerical integration of the Bloch's equation 
(Banks et al., 1989; Madrid et al., 1989), a Taylor series approach (Forster, 1991), a perturbation 
series approach (Yip, 1989) or even one employing diagonalization (Keepers and James, 1984). 
The crux is that once the NOEs have been evaluated, Eq. 6 could be used in a numerical 
integration scheme to produce the derivatives efficiently and accurately. 

(iii) Mathematical generality. Again, since diagonalization is not required, Eq. 6 is still valid 
for cases where R is not diagonalizable. For example, Eq. 1 can describe any first order rate 
process, for which the rate matrix might not be symmetric, hence not diagonalizable. In this case, 
Eq. 6 can still be used while Eq. 8 would not apply. 

A NOE refinement code (NOE-MD) is being prototyped by incorporating Eq. 6 into the 
molecular dynamics routine DISCOVER. Preliminary results are quite promising. For example, 
for a crambin-sized molecule (~300 protons) with a cut-off distance of 6 A, calculating 100 2D 
NOESY peaks and their gradients with respect to proton coordinates takes 0.6 s CPU on the IBM 
560, and 2 s CPU on the Indigo R3000. This is significantly faster than a similar calculation done 
using the expression in Eq. 8 (Yip and Case, 1989), which took 9 s on the Cray XMP. In future 
publications, more details of the implementation will be presented. 

Note added in proof 
After submission of this article, Dr. T. Havel personally communicated to the author that his 

group is conducting work along similar lines and has submitted a manuscript to the Quarterly of 
Applied Mathematics. 
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